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The use of machine learning models, particularly
convolutional neural networks (CNNs), has become a
favored technique for processing image data in many
research contexts. One area in which such models can be
leveraged to streamline workflows for neutron scattering
experiments is the automation of sample alignment
protocols. Unlike applications which require only the
detection or classification of objects, identifying sample
centers of mass used for alignment requires image
segmentation which describes both the location and spatial
extent of a sample. RadiaSoft is currently working with
scientists at Oak Ridge National Laboratory (ORNL) to
develop modular, customizable software which interfaces
with machine-level beamline data, processes that data, and
returns alignment information to beamline controls. In this
talk, we provide an overview of our interface software and
segmentation models. We also discuss the application of our
models to images from different beamlines, the extension of
pre-trained models using transfer learning, and methods for
quantifying model uncertainty.

The images of scattering samples used in this project are
collected at the TOPAZ [1] and HB2A [2] beamlines at ORNL.
Images from TOPAZ are taken by ordinary cameras, but may
be taken alongside or from below the sample depending on
the operational mode. Images from HB2A are taken using a
neutron camera, and feature high levels of noise. Masks used
during network training must be defined manually.
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A block-diagram depiction of the workflow in our input/output
controller, focusing on the automated alignment process.

The control system into which our machine learning models
are embedded essentially functions as an interface between
machine-level controls managed using the EPICS package
and user-defined alignment processes. Quantities of interest
such as image data, beam center positions, and sample
centers of mass are monitored, processed, and modified by a
central Python program and exist locally as EPICS process
variables (PVs). This allows us to read sample image data,
preprocess them, and pass them through our image
segmentation models in real time.
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Left: An example of input & output controller variables
Right: A histogram of execution times for the automated
alignment process over 1000 trial runs on historical data.

One issue of concern for the practical application of our
control system is the execution time of control processes. By
including model execution time during hyperparameter
optimization, we significantly reduced the contribution of
UNet predictions to the overall time. A follow-up series of
1000 trial runs of the full automated alignment process
resulted in an average total runtime of around 0.130 s.
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A block-diagram depiction of the general UNet architecture

Accurate, quantitative uncertainty estimation is paramount
for any ML application which will eventually inform real-
world decisions. In our control system, uncertainties will be
used to determine, e.g., the need for human intervention
during alignment procedures. To quantify model prediction
uncertainty, we randomly initialized and trained ensembles
of 20 models for 16 distinct combinations of training set
(TOPAZ/HB2A), hyperparameter optimization (or lack of),

TOPAZ & HB2A to TOPAZ

HB2A & TOPAZ to HB2A

Our initial network training efforts involved the construction
of UNets for each beamline based on publicly available
implementations. The hyperparameters of these models were
modified iteratively to yield minimally performant models.
Taking these as starting points, we conducted procedural
hyperparameter optimization resulting in optimized models
with substantially reduced validation losses.

Example beamline sample images & their manually defined masks
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The CNN architecture used for image segmentation in this
project is based on UNet [3]. It features a contraction path
which passes inputs through convolutions and max-pooling
operations to encoded feature information while reducing
spatial dimensions. Convolutions are then performed on the
final feature-space representations, further condensing the
feature information. This information is passed through an
expansion path of regular and up-convolutions to localize
feature information and concatenation with expansion path
feature maps to improve spatial precision. Our models
consist of five convolutional layers, with numbers of filters
that begin at 16 and double at each successive depth.

A necessary feature of our controls interface software is the
ability to rapidly deploy to new beamlines or sites. To test
the extensibility of our models, we performed additional
rounds of training during which optimized models were re-
trained using either the same data used during initial
training or underwent transfer learning [4, 5] on data from
the opposite beamline. This provides an especially robust
test of model extensibility given the alternation between
ordinary and neutron camera images. We found that
transferred models not only achieve similar validation losses
compared to those trained on a single dataset, but ultimately
outperformed them regardless of the order of training.

Validation losses for continued (blue) and transferred (purple)
training of models initially trained (orange) one set of data
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Distributions of RMS error and ensemble variances for an
ensemble of optimized models trained on TOPAZ images.

Results uncertainty quantification through ensemble statistics,
including predictions for the sample mask and center of mass.

and continued or transferred training (if any). Computing
variances in the mask and center of mass predictions of each
model in an ensemble over a validation set, we were able to
compare against the MSE metric which is used during
training and confirm that the distributions of both metrics
were (in all cases) closely comparable. This is a highly useful
result as the MSE cannot be computed during live operation
and aleatoric measures of uncertainty like the ensemble
variance do not always provide a good approximators of
epistemic quantities like the MSE [6].

Mini-Workshop on Machine 
Learning Applications for 
Particle Accelerators

https://github.com/radiasoft/public/wiki/DOE-Disclaimer

